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ABSTRACT
We analyze log-data generated by an experiment with Frac-
tions Tutor, an intelligent tutoring system. The experi-
ment compares the educational effectiveness of instruction
with single and multiple graphical representations. We ex-
tract the error-making and hint-seeking behaviors of each
student to characterize their learning strategy. Using an
expectation-maximization approach, we cluster the students
by learning strategy. We find that a) experimental condition
and learning outcome are clearly associated b) experimental
condition and learning strategy are not, and c) almost all of
the association between experimental condition and learn-
ing outcome is found among students implementing just one
of the learning strategies we identify. This class of students
is characterized by relatively high rates of error as well as a
marked reluctance to seek help. They also show the greatest
educational gains from instruction with multiple rather than
single representations. The behaviors that characterize this
group illuminate the mechanism underlying the effectiveness
of multiple representations and suggest strategies for tailor-
ing instruction to individual students. Our methodology can
be implemented in an on-line tutoring system to dynamically
tailor individualized instruction.

1. INTRODUCTION
Multiple graphical representations (MGRs) are ubiquitous
in math and science instruction: they are frequently used
to emphasize complementary conceptual interpretations of
complex learning materials. Fraction instruction is one do-
main in which graphical representations, such as number

lines, pie-charts, and rectangles are used to help students
overcome the difficulty of the material. Although the educa-
tional psychology literature suggests that requiring students
to translate between representations supports the creation
of deep knowledge structures [6], the experimental results
are somewhat ambiguous [1] and the mechanisms underly-
ing these advantages are not well understood [2].

Because student interaction with intelligent tutoring sys-
tems (ITSs) generates very fine-grained behavioral and out-
come data, these systems are well-suited for conducting ex-
periments on the effect of MGRs on learning outcomes [14].
Machine learning methods can be profitably applied to iden-
tify the kinds of students whose learning outcomes are im-
proved by MGRs and the factors mediating their success
[19]. Such insights enable developers of ITSs to design in-
dividualized instructional support that can make learning
with MGRs even more effective. This may involve encourag-
ing students to reflect on the material with self-explanation
prompts [17] or detecting ineffective strategies and imple-
menting interventions on-the-fly. Work in the latter area
ranges from detecting abuse of the ITS hint system and other
“gaming” behaviors [8, 7] to providing spontaneous help to
students lacking the metacognitive skills to know when they
could use a hint [3, 4, 5].

Prior research conducted on elementary-school students work-
ing with a Fractions Tutor suggests that prompting students
to self-explain while working with MGRs improves their ed-
ucational effectiveness [17]. Subsequent studies examining
error-rate, hint-use and time-spent in tutor’s log failed to
identify variables that mediate the effectiveness of MGRs
[16]. The mechanisms by which multiple graphical repre-
sentations improve learning outcomes remain poorly under-
stood.

We conjecture that previous efforts to identify mediating fac-
tors were frustrated by heterogeneity in the problem-solving
habits and behaviors of the student population under inves-
tigation. Using a mixture modeling technique, we cluster



students by the patterns of interaction with the tutor in the
log-data that characterize their learning strategy. Cluster-
ing based on student characteristics has proved successful
in grouping students into meaningful subpopulations across
both collaborative [15] and individual [9, 13, 20] educational
environments.

Four strategic profiles emerge from our analysis, each with
a natural interpretation. Two of the profiles are character-
ized by a low propensity to seek help from the tutor. In
one of these the students are simply confident: they make
few errors, solicit little help and don’t seem to need any.
In the other the students are reluctant to solicit help even
though they seem like they need it: they make a relatively
large number of mistakes but make little use of the support
mechanisms the tutor provides. We characterize this second
class as “stubborn” without intending any pejorative conno-
tations. A third class is highly interactive: they make many
mistakes, seek assistance readily and frequently exhaust the
hints available in a given problem. Students in the fourth
class occupy a middle ground between the interactive and
the stubborn: they make an average number of mistakes and
will eventually seek help when they are having trouble.

We proceed to explore how the experimental conditions af-
fect post-test outcomes. Confirming previous results [16],
we find that students in the multiple-representation con-
dition had greater learning gains than those in the single-
representation condition. MGRs seem to have a robust and
positive effect on long-term knowledge consolidation. We
then explore the effect of multiple representations in the
sub-populations defined by each strategic profile. We first
establish independence between learning strategy and exper-
imental condition. This suggests that we are detecting pre-
existing strategic profiles, rather than artifacts of the exper-
imental setup. Most interestingly, we discover that learning
gains from MGRs depend heavily on learning strategy. Stu-
dents exhibiting a “stubborn” profile profited substantially
from instruction with multiple rather than single represen-
tations. For the remaining students, experimental condition
and learning gain were independent. We conjecture that
“stubborn” students lack the metacognitive skills to judge
when their learning strategies are failing. These students
are the most sensitive to pedagogical decisions because they
are the least equipped to structure and manage their own
learning.

Section 2 of what follows describes the initial experiment and
elaborates on the differences between the representational
conditions. We describe our feature extraction process and
modeling decisions in Section 3. Section 4 summarizes the
results of the model estimation and statistical analysis of the
effects of multiple representations at the population and sub-
population levels. We suggest profitable future directions in
Section 5.

2. EXPERIMENT
In the Spring of 2010, Rau conducted an experiment wherein
290 4th and 5th grade students worked with a Fractions Tu-
tor for about 5 hours of their mathematics instruction. Stu-
dents were randomly assigned to one of five experimental
conditions, which varied by the frequency with which stu-
dents would be presented with a new fraction representation

(see Figure 1). Students in the Single representation con-
dition worked exclusively with either a number line, a circle
or a rectangle. Students in the Fully Interleaved con-
dition saw a different representation than was used in the
preceding problem. Students in the intermediate conditions
went longer before seeing a different representation.

Figure 1: A partial ordering of experimental condi-
tions by the frequency with which a new represen-
tation is presented.

When interacting with different graphical representations of
fractions, students were able to drag-and-drop slices of a pie
chart, for example, into separate areas. They were also able
to experiment with changing the number of subdivisions in
each graphical representation. Students received a pre-test
on the day before they began working with the tutor and an
immediate post-test on the day after they finished. Students
also took a delayed post-test a week after the first. Previous
investigation found that students in the MGR conditions sig-
nificantly outperformed students in the single representation
condition on the delayed post-test [16, 18].

3. METHOD
We proceed in three stages: (1) we extract features char-
acterizing error and hint-seeking behavior from the data
logs, (2) we transform the longitudinal log data into a cross-
sectional form, with one observation per student, and (3)
we estimate a mixture model to identify sub-populations of
students, using AIC and BIC to select the number of classes.

Once we have clustered our students by their learning strat-
egy, we investigate the interaction between the strategies
and the experimental conditions. We construct a contin-
gency table binning the experimental conditions into the
clusters estimated by the mixture model. We then run a Chi-
squared test for independence between experimental condi-
tion and learning strategy. Chi-squared tests are also run to
investigate dependence between pre-test outcome and strat-
egy, strategy and post-test outcome and the conditional de-
pendence of outcome and experimental condition, given a
strategic profile.

3.1 Extracting Features
The Fractions Tutor captures a detailed log of each stu-
dent’s interactions with the tutor. It stores a time series of
correct and incorrect answers, hint requests, interface selec-
tions and durations between interactions. Previous analysis
[16] extracted the average number of errors made per step,
the average number of hints requested per step, and the



Figure 2: The x-axis represents the nth interaction with the tutor across all problems. The y-axis is the total
number of hints requested at the nth step.

average time spent per step from the log data. These vari-
ables were used to characterize gross behavioral strategies
and dispositions. Similarly, we include the average num-
ber of hints requested (HintsRequested) and number of
errors (NumErrors) made per problem by each student.
We also extract the average number of bottom-out hints
(NumBOH) per student per problem – this is the average
number of times a student exhausts the available hints in a
given problem. We also note that it is not always the aver-
age of these features that best characterizes a student. For
example, examination of the distribution of hints requested
per step across experimental condition, shows a telling pic-
ture.

Note that students who received only one representation
start out requesting the fewest hints, but students in the
moderate condition eventually need fewer (see Figure 2).
Also, students in the interleaved condition tend to request
many hints in the early steps of a problem, potentially re-
flecting the cognitive load associated with translating be-
tween representations [1]. Such considerations suggested
that exploiting the timing of student interactions within a
problem might expose structural features obscured by step-
wise averages (as used in [16]). We fit geometric distri-
butions to the number of steps taken before the first hint
request (FirstHintGeometric) and to the number of er-
rors before the first hint (StubbornGeometric). The esti-
mated parameter is used to characterize the student’s hint-
seeking propensity in general and hint-seeking propensity
when faced with adversity. For example, students in the
first quintile of StubbornGeometric seek help soon af-
ter making a mistake, whereas students in the fifth quintile
don’t change their hint-seeking behavior even after making
a large number of errors. Students in the first quintile of
FirstHintGeometric are likely to request hints early in a
problem, whereas students in the fifth quintile are unlikely

to request hints at any point.

3.2 Expectation-Maximization Clustering
Expectation-Maximization (EM) clustering is a modeling
technique that determines subtypes based on multinomial
distributions. We use the model to categorize students into
subpopulations using discretized versions of the features de-
scribed above. Table 1 shows summary statistics and cut-off
points for the extracted features. The model maps a set of
observed categorical variables onto a set of inferred classes.

We note that the categorical nature of the model has the
potential to add some noise, since we must select numeric
cutoffs to transform our variables into nominals. However,
categorical models can offer greater interpretability by al-
lowing us to organize our data into a small set of variables,
which forms the basis for categorizing students into a small
set of meaningful, homogenous groups. Furthermore, it is
not unreasonable to suspect that our variables are in some
sense “truly” categorical [10, pp8–9]. EM clustering requires
a relatively small set of variables to train the model. As the
number of training variables increases, the number of model
parameters blows up and the model becomes overspecified.

Unlike some common clustering algorithms (e.g., k-means),
EM produces “fuzzy” clusters (i.e., probability distributions
over features for each class). We use these probability dis-
tributions in our qualitative discussion about the subpopu-
lations (Section 4.1), however we ultimately need to identify
each student’s most likely class. For each student s and class
c we calculate

arg max
c

P (S = s | C = c) (1)

where the probabilities are determined by the EM algorithm.



Table 1: Summary Statistics for Variables Used in Clustering

mean sd median min max 20% 40% 60% 80% 100%

HintsRequested 0.78 1.27 0.34 0 11.22 0.06 0.19 0.5 1.31 11.22

NumErrors 2.21 1.27 1.92 0.34 8.39 1.15 1.7 2.18 3.19 8.39

FirstHintGeometric 0.35 0.27 0.27 0.04 1 0.13 0.2 0.33 0.57 1

Stubborn Geometric 0.36 0.21 0.31 0.07 1 0.19 0.27 0.38 0.47 1

NumBOH 0.04 0.08 0 0 0.62 0 0 0.01 0.05 0.63

We still need to fix N , the number of classes. We use two
complexity-penalized log-likelihood scores to select an ap-
propriate N : Akaike information criterion (AIC) and Bayesian
information criterion (BIC). Plotting these statistics as we
increment the number of classes, we look for a “knee” where
both statistics either bottom-out or level off to identify the
optimal value of N . To run analysis, we used poLCA, a freely
available R package.1

4. RESULTS
In the sections that follow we analyze the results of our clus-
tering algorithm. We describe the strategic profiles that
were generated and characterize the students fitting each
profile. We then consider the relationships between our vari-
ables of interest: (a) adjusted delayed post-test score, (b) ex-
perimental condition, and (c) learning strategy. Specifically,
we run a series of Chi-squared tests for independence to de-
termine how each variable relates with the others, comment-
ing on the importance of each comparison. Finally, we ex-
plore the stability of these classes, which bears on whether
future systems could detect students’ strategic profiles in
real time.

4.1 Exploring the Learning Strategies
Figure 3 shows the parameter selection process described
in Section 3.2. Note that we chose to model four classes
because BIC bottoms out and AIC levels off at that point.

After selecting the appropriate N parameter, we extract
membership probabilities for the individual students. Given
a strategic profile, we can estimate the probability distribu-
tion over each feature, and use Equation 1 to identify the
most likely profile for each student.

The feature distributions over each profile are represented
graphically in Figure 4. Each feature is listed along the
horizontal x-axis, the value each variable takes is along the
front-to-back y-axis, and the probability that the feature
takes that value is given along the vertical z-axis. For ex-
ample, consider the HintsRequested feature (average hints
requested per problem) in the “interactive” class. In that
class, with high probability, students requested many hints
(i.e., the highest categorical value for hints) per problem on
average. As another example, students in the “moderate”
class are more likely to make a moderate number of errors,

1http://userwww.service.emory.edu/~dlinzer/poLCA/

Figure 3: AIC and BIC over increasing number of
clusters. BIC bottoms out and AIC levels off at four
clusters, so we conclude that four clusters best fits
the data.

though other error levels also occur with nontrivial proba-
bilities. Lower values of FirstHintGeometric and Stub-
bornGeometric indicate a steep geometric slope, corre-
sponding to a higher hint-seeking propensity and stubborn-
ness, respectively.

How do we interpret cluster membership? Students in Class
1 are “Moderate”, they ask for a moderate number of hints,
make a moderate number of errors, and are moderately re-
sponsive to the interface. Students in Class 2 are “Inter-
active”, they make a lot of errors, but respond by request-
ing many hints. These students are proactive in asking for
help and are not shy about using the resources the Frac-
tions Tutor makes available. Students in Class 3 are “Confi-
dent”, they don’t ask for hints, but they don’t seem to need
them (since they make few errors). Finally, we call stu-
dents in Class 4 “Stubborn” because they are fairly mixed in
error-profile but they don’t respond to mistakes with hint-
requests. These students are not using all the resources that
the Fractions Tutor makes available.

4.2 Condition and Outcome
We use normalized learning gain at the delayed post-test as
our measure of student improvement.

Learning Gain = DelayedPostTest−PreTest
1−PreTest



Figure 4: Visualization of feature distributions for each learning profile. The left-to-right x-axis identifies
each feature, the front-to-back y-axis identifies which value that feature takes, and the top-to-bottom z-axis
describes the probability that the feature takes the value. Thus, given a feature and a class, the z-axis also
describes the probability distribution over that feature in that class.

We then construct terciles of the Adjusted Delayed Post-
Test Score and run a Chi-squared test for independence of
outcome from experimental condition. Confirming previous
results, we reject independence at a p-value of .024 (see Table
2). As expected, students in the multiple representation
conditions were more likely to be in the second or third
tercile of adjusted delayed post-test score, whereas students
in the single representation condition were more likely to be
in the first.

4.3 Learning Strategy and Test Scores
We would expect that a student’s learning strategy would
predict (and perhaps cause) their ultimate educational out-
come. To test this intuition, we calculate a Chi-squared
statistic for independence of learning strategy from normal-
ized delayed post-test gain. We reject independence at a
p-value of .0075 (see Table 3). The behaviors encoded by
strategic profile seem highly relevant to knowledge consoli-
dation in the long run. Students in the moderate class are
found mostly in the second and third tercile. These students
are implementing a subtle but effective strategy. Their mod-
eration in hint-seeking indicates a level of self-reflectiveness

33% 66% 99%

blocked 14 29 20

increased 22 20 20

interleaved 13 21 18

moderate 18 13 22

single 30 13 17

X 2 = 17.65, df = 8, p-value = 0.024

Table 2: Experimental Condition by Tercile of Ad-
justed Delayed Post-Test Score.



that we would expect from students with highly developed
metacognitive skills. Students in the interactive class are
characterized by a high number of errors, so we are not sur-
prised to find them represented mostly in the first and sec-
ond terciles. These students are the most likely to exhaust
all the hints available in a given problem. If one were look-
ing for students engaging in “gaming” behavior this would
be the class to search, perhaps using techniques from [7]. As
one would expect, the confident students are likely to end
up in the third tercile. The stubborn students are clustered
at the extremes: they are more likely to end up in the first
or third tercile than the second.

Learning Gain Pre-Test

33% 66% 99% 33% 66% 99%

moderate 20 35 29 30 32 22

interactive 33 26 14 37 27 9

confident 13 15 22 5 14 31

stubborn 31 20 32 26 22 35

Learning Gain: X 2 = 17.52, df = 6, p-value = 0.0075
Pre-Test: X 2 = 42.3764, df = 6, p-value = <0.001

Table 3: Learning Strategy by Tercile of Normalized
Delayed Post-Test and Pre-Test Score

Although we implicitly account for the pre-test scores in our
learning gain metric, we also investigate the relationship be-
tween learning strategy and pre-test scores (Table 3). As
expected, we reject independence between strategic profile
and pre-test score, suggesting that these profiles are gen-
uinely meaningful descriptions of student behavior.

Although pre-test score and strategic profile are dependent,
the average pre-test score for the “stubborn” students does
not differ significantly from the rest of the population.2 Pair-
wise t-tests between the four profiles show significant differ-
ences in mean pre-test score for all pairs except stubborn
and moderate. This analysis suggests that the dependence
we detect between experimental condition and outcome for
the “stubborn” students does not hinge essentially on pre-
test score. If pre-test is an accurate proxy for preparedness,
the stubborn students do not occupy a preparedness “sweet-
spot” that makes multiple representations uniquely effective.
Rather, it seems to be their unique strategic profile that ac-
counts for the effectiveness of MGRs.

4.4 Condition and Learning Strategy
We may also worry that experimental condition is inducing
learning strategy. If this were the case, we would suspect
that we were picking up on artifacts of the experimental de-
sign rather than pre-existing student profiles. However, us-
ing the Chi-squared test, condition and cluster membership
appear independent (see Table 4).3 To anticipate Simpson’s
paradox-type worries, we collapse all four multiple represen-
tation conditions (blocked, moderate, increased, interleaved)
into a single “multiple representation” condition, but still

2Student’s T-test: t = 0.9978, df = 139.602, p-value =
0.3201
3We fail to reject independence at a p-value of .38.

find independence.4 These results suggest that our method
is detecting genuine student profiles, independent of experi-
mental condition.

mod. inter. conf. stub.

blocked 13 15 10 25

increased 21 16 10 15

interleaved 17 18 7 10

moderate 18 10 12 13

single 15 14 11 20

X 2 = 12.85, df = 12, p-value = 0.38

Table 4: Experimental Condition by Learning Strat-
egy

4.5 Condition, Outcome and Strategy
Finally, we explore the relationship between learning out-
come and experimental condition for each of the strategic
profiles we have identified. Interestingly, we find that exper-
imental condition has a substantial effect on learning out-
come among the “stubborn” students, but virtually no effect
on learning among the “moderate”, “interactive”, and “con-
fident” (see Table 5). Most students perform in the second
and third tercile when given multiple graphical representa-
tions, but are overwhelmingly in the first tercile when given
a single representation.

Students in the other three classes are not significantly af-
fected by their representation condition. The learning strate-
gies that these students implement seem to make them re-
silient to representational choice, at least in this experimen-
tal regime. Recall that students exhibiting the “stubborn”
profile rarely requested hints, even when they encountered
difficulty. We speculate that they lack the metacognitive
skills to judge when their learning strategies are failing, and
thus are not seeking help at appropriate times [4]. They
are the most sensitive to pedagogical decisions because they
are the least equipped to structure and manage their own
learning.

An ITS ought to ensure that these students are targeted
with multiple representations, and perhaps other forms of
metacognitive support. While not all “stubborn” students
improve when given MGRs, the vast majority of them do.
An ITS might help scaffold effective learning behaviors by
spontaneously offering hints to these students when they
appear to need them the most. A teacher informed that
a student exhibits this learning profile may try to encour-
age the student to ask for help and target their metacog-
nitive skills more generally. Moreover, studying this sub-
population seems to be a promising avenue for illuminating
the mechanism by which MGRs improve learning outcomes.
Future experiments could test the effect of offering sponta-
neous hint-support to students that fit the “stubborn” pro-
file.

4X 2 = 1.1517, df = 3, p-value = 0.7646



moderate 33% 66% 99%

blocked 2 8 3

increased 4 9 8

interleaved 4 9 4

moderate 4 5 9

single 6 4 5

interactive 33% 66% 99%

blocked 7 6 2

increased 9 5 2

interleaved 5 8 5

moderate 7 2 1

single 5 5 4

X 2 = 8.08, df = 8, p-value = 0.43 X 2 = 6.95, df = 8, p-value = 0.54

confident 33% 66% 99%

blocked 0 5 5

increased 3 3 4

interleaved 2 2 3

moderate 3 4 5

single 5 1 5

stubborn 33% 66% 99%

blocked 5 10 10

increased 6 3 6

interleaved 2 2 6

moderate 4 2 7

single 14 3 3

X 2 = 7.41, df = 8, p-value = 0.49 X 2 = 17.4837, df = 8, p-value = 0.025

Table 5: Condition and Tercile of Adjusted Delayed Post-Test Score, by Learning Strategy

We note that there are competing interpretations of our re-
sults that also suggest interesting future experiments. Stud-
ies have found that well-designed feedback from errors may
be very effective for improving learning outcomes [12]. It
may be that “stubborn” students, by not shying away from
mistakes, are taking advantage of a more effective support
system than students who avoid mistakes by soliciting hints.
Since instruction with multiple representations is generally
more difficult, stubborn students in a multiple representa-
tion condition would get more of this kind of feedback on
average. This interpretation would predict that students
in the “interactive” profile would benefit if some hints were
withheld [11]. However, this hypothesis could only be tested
by subsequent experiments.

4.6 Profile Stability
If an intelligent tutoring system could implement our classi-
fication methodology on-the-fly, it could tailor its pedagog-
ical interventions to the needs of the individual student. To
substantiate the promise of the methodology we investigate
how efficiently the algorithm stabilizes to the final classifica-
tion. To measure this, we first cluster on the entire corpus
and assign each student to their most likely profile. We
then artificially subset the data by restricting the number
of problems seen by the clustering algorithm, compute the
proportion of students who are in their “final” profile, and
then iteratively increase the size of the subset. This sim-
ulates how well our algorithm identifies student profiles as
they make their way through the material.

Figure 5 shows the percentage of total data used to esti-
mate the model plotted against the proportion of students
assigned to their final strategic profile. At each iteration, we
look at an additional 10 problems from each student and re-
estimate the cluster assignments. The regression estimates
that 63% of the data is sufficient to classify three quarters of

Figure 5: We measure the number of students who
were classified into their ultimate strategic profile
as the amount of data available to EM is increased.
We see that at about 60% of the data we can classify
about 75% of the students into their ultimate profile.



the students into their ultimate cluster. Thus, after seeing
about 60 problems – about two days of classroom instruc-
tion – a dynamic intelligent tutoring system might intervene
on students who fit the “stubborn” profile by ensuring that
they are presented with multiple graphical representations,
offering them spontaneous hints or targeting them with some
other form of metacognitive support.

5. CONCLUSION & FUTURE WORK
We estimated an expectation maximization clustering model
to classify students into four strategic profiles based on their
error-rates and hint-seeking behaviors. We detected an ef-
fect of experimental condition on post-test outcome only in
the class of students characterized by high-error rate and
low hint-seeking propensity. That is, students who did not
seem to take full advantage of the resources that the Frac-
tions Tutor offered were the ones most strongly affected by
experimental condition. These students may not have the
metacognitive skills required to know when to seek hints.

Our methods could be used by ITS designers to detect stu-
dents with this profile in real time. Tutoring systems could
then intervene to target these students with MGRs, scaffold
their hint-seeking behaviors or target them with other forms
of metacognitive support. Future research into the mediat-
ing mechanisms of multiple representations could leverage
our results to identify the relevant student sub-populations
to investigate. Our post-hoc analysis is not designed to iden-
tify the cognitive processes underlying the student’s prob-
lem solving behavior, so interviews or a cognitive task anal-
ysis with students who fit the “stubborn” profile could re-
veal more details about their experience than we can detect
from the log data. Additional investigation into different
features may help further characterize student behavior and
could help us more accurately group students into relevant
subpopulations. Although our analysis seems to have re-
vealed interesting differences in student learning strategies,
more informative features constructed from log data may do
better. Constructing more informative features, for exam-
ple, might allow us to separate the “stubborn” students into
those who did and did not benefit from multiple graphical
representations.
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