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ABSTRACT 
Large amounts of data are generated while students interact with 
computer based learning systems. These data can be analysed 
through data mining techniques to find patterns or train models 
that can help tutoring systems or teachers to provide better 
support. Yet, how can we exploit students’ data when they 
perform small-group face-to-face activities in the classroom? We 
propose a novel approach that aims to address this by discovering 
the strategies followed by students working in small-groups at a 
multi-tabletop classroom. We apply two data mining techniques, 
sequence and process mining, to analyse the actions that 
distinguish groups that needed more coaching from the ones that 
worked more effectively. To validate our approach we analysed 
data that was automatically collected from a series of authentic 
university tutorial classes. The contributions of this paper are: i) 
an approach to mine face-to-face collaboration data unobtrusively 
captured at a classroom with the use of multi-touch tabletops, 
and ii) the implementation of sequence mining and process 
modelling techniques to analyse the strategies followed by 
groups of students. The results of this research can be used to 
provide real-time or after-class indicators to students; or to help 
teachers effectively support group learning in the classroom.  
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1. INTRODUCTION 
Collaborative face-to-face activities can offer particular 
advantages compared to computer-mediated group work [17]. 
These include a natural channel for both verbal and non-verbal 
communication, improved perception of quality of group 
discussions, and an increased productivity in completing tasks 
[17, 18]. The classroom is a common environment in which the 
teacher can foster face-to-face collaboration skills acquisition by 
making use of small-group activities [8]. However, even in small-
group activities, it is challenging for teachers to provide students 
the attention that they may require and be aware of the process 
followed by each group or their individual contributions [21]. 
Commonly, teachers try to identify the groups that work 
effectively to leave them work more independently and be able to 
devote time to groups needing their attention.  

Multi-user shared devices, such as interactive tabletops, provide 
an enriched space where students can communicate face-to-face 
with each other and, at the same time, interact with a large work 
area that has access to digital content and allows the creation of 
persistent artefacts [14]. Interactive tabletops may afford new 
possibilities to support learning but they also introduce 

additional challenges for a new space of interaction. In order for 
these tabletops to be integrated into the classroom, as with any 
emerging technology, they should provide additional support to 
teachers compared with what they can currently do without such 
technology [4]. Currently, these devices are making their way 
into the classroom in the form of multiple interactive tabletops 
that have the potential of providing teachers with new ways to 
control groups [1, 11]; plan and enact authentic collaborative 
activities [10]; and monitor students’  progress  [5, 11]. 

At the same time, the increasing usage of technology for learning 
and instruction has made it possible to collect students’  traces  of  
activity resulting in large amounts of data gathered while they 
interact with computer based learning systems. These data can be 
analysed through data mining techniques to find patterns or train 
models that can help tutoring systems or teachers to provide 
enhanced support [3]. Although there is substantial research 
work  on  mining  students’  data obtained from individual or online 
learning systems, there is still little research on automatically 
exploiting the data generated when learners perform small-group 
face-to-face activities in the classroom. 

A slightly hidden potential of interactive tabletops is that they 
can open new  opportunities  for  capturing  learners’  digital traces 
of activity, offering teachers and researchers the possibility to 
inspect the process followed by students and recognise patterns 
of group behaviour [12]. This paper presents a novel approach 
that focuses on analysing face-to-face collaboration data to 
discover the strategies that distinguish groups that need more 
coaching from the ones that work effectively.  

To validate our approach we analysed data that was 
automatically and unobtrusively collected from authentic 
tutorials that covered part of the regular curricula of a university 
subject in the area of Management. The teacher designed a 
small-group collaborative activity, based on the concept mapping 
learning technique, using our multi-tabletop classroom 
environment called MTClassroom [11]. This allows multiple 
small-groups of students to work around a number of interactive 
tabletops, perform a series of tasks, discuss a topic and provide a 
solution to a case proposed by the teacher. The system 
automatically logs identified students’   actions on the shared 
device and all the steps that groups performed to build a 
collaborative artefact. We describe the application of two data 
mining techniques. First, we used a sequential pattern mining 
technique to look for patterns that can help find differences 
between groups according to the teacher assessment. Then, we 
used the Fuzzy Miner tool [6] to discover the processes most 
often followed by both high and low achieving groups. The main 
contributions of this paper are: i) an approach to mine face-to-
face collaboration data unobtrusively captured at a classroom 



Figure 1. MTClassroom: a multi-tabletop classroom with 
capabilities for capturing differentiated students’  activity. 

 

with the use of multi-touch tabletops, and ii) the implementation 
of sequence mining and fuzzy modelling techniques to analyse 
and discover strategies followed by groups of students.  
The paper is structured as follows. The next section describes the 
state of research on the areas of interactive tabletops in the 
classroom and data mining for collaborative learning. Then, we 
present details of the multi-tabletop tutorials and our technical 
infrastructure. Section 4 presents the motivation and design of 
study. Section 5 describes the data pre-processing and the 
methods. Section 6 presents a discussion of the results. Section 7 
states the conclusions and the avenues for future research.  

2. RELATED WORK 
There is a steady growth of the usage of tabletops in education. 
More specifically, there are a number of research projects that 
have used multiple tabletops or shared devices in the classroom. 
One of these is Synergynet [1], a multi-tabletop setting that has 
served to study the ways school kids collaborate and interact to 
achieve group goals. This project also included the design of 
tools for the teacher to control the classroom activities. Another 
approach was proposed by Do Lenh [5], who developed a setting 
for training on logistics, that consisted of four tangible horizontal 
devices that could be orchestrated by the teacher using paper-
based commands or through a remote computer. This project also 
offered minimalist indicators of progress of each small group 
presented at a wall display. Even though these two previous 
projects included real students and teachers, they were mostly 
designed and deployed as experimental scenarios. A different 
approach was followed by Martinez-Maldonado et al. [10], who 
presented a multi-tabletop system that permitted teachers to 
assess the design and enactment of their planned classroom 
activities through the use of analytics tools. This is the only 
previous work that has focused on exploiting the collected data 
from a multi-shared device environment to describe the activities 
that occur in an authentic classroom.  

In the case of data mining applied to collaborative settings, the 
closest study to ours was presented by Martinez-Maldonado et al. 
[12]. It consisted in extracting and clustering frequent sequential 
patterns to then link them with high level group actions at a pen-
based tabletop learning application called Mysteries. One 
important study, even though not related to tabletops, was 
performed by Perera et al. [20] who explored the usage of 
sequence mining alphabets and clustering to find trends of 
interaction associated with effective group-work behaviours in 
the context of a software development tool. Moreover, Anaya et 
al. [2] analysed a computer-mediated learning tool to classify and 
cluster learners according to their level of collaboration.  

The work reported in this paper is the first effort we are aware of 
that proposes an integrated solution, inspired by authentic needs 
of  the  teacher  in  the  classroom,  to  exploit  the  students’  data  that  
can be captured by multiple tabletops though the application of a 
data mining technique and a process modelling tool.  

3. MULTI-TABLETOP TUTORIALS 
This section describes our technical infrastructure that consists 
of: the multi-tabletop   classroom,   a   teacher’s   dashboard,   the  
system   for   capturing   identified   learners’   actions   and   a   learning  
tool for building concept maps. We also describe the teacher’s  
design of the tutorials. 

3.1 Technical Infrastructure 
Our multi-tabletop classroom is called MTClassroom [11]. This 
has a number of interconnected multi-touch interactive tabletops 
(four in this study). Figure 1 shows an instance of MTClassroom 
for a demo tutorial. Each tabletop consists of a 26 inch PQlabs 
overlay placed over a high-definition display that is enriched 
with Collaid [9]. Collaid is a system that provides an ordinary 
interactive tabletop the capability of automatically and 
unobtrusively identifying which person is touching where, based 
on an over-head depth sensor (www.xbox.com/kinect  ). Using this 
system, each tabletop can identify actions performed by each 
student according to their seating position.  

The logging system of each tabletop records the activity logs to a 
central synchronised repository that can be accessed in real time 
by other services. One of these is a teacher’s dashboard called 
MTDashboard [11]. This dashboard provides functions for the 
teacher to orchestrate the tabletops (e.g., blocking the touch input 
of all tables or moving the class to the next phase) and to see key 
live-indicators of work progress of each small-group. Figure 2 
shows the teacher holding the dashboard, displayed on a tablet 
device, while she provides feedback to a group. The classroom 
activity consisted in elaborating collaborative concept maps 
about a case proposed by the teacher. Concept mapping is a 
technique that promotes learning by allowing students to visually 
represent their understanding in the form of concepts associated 
by linking words that creates statements [16]. We used a 
minimalist version of a tabletop concept mapping application 
called Cmate [9]. Cmate provides students with a list of concepts 
and linking words suggested by the teacher, and also allows them 
to type their own words, in order to build a concept map that 
represents their solutions. Prior to the tutorials, the teacher 
creates a master concept map with the crucial concepts and links 
that learners are expected to include in their maps.  

3.2 Tutorials Design 
Eight tutorial sessions were organised in the School of Business 
of the University of Sydney during week 6 of semester 2, 2012 
for the course: Management and organisational ethics. The 
teacher designed a case resolution activity to cover the topic of 
the curricula corresponding to that week. A total of 140 students 
attended these tutorials (from 15 to 20 students per session) that 
were organised in groups of 4, 5 or 6 students.  

The teacher designed the tutorial script as follows: 1) 
Introduction (10 minutes): the teacher forms groups, explains to 
students how to use the concept mapping application and 



Figure 2. A teacher attending a group while holding the 
MTDashboard 

 

Table 1. Possible actions on the concept mapping tabletop system 
High impact actions 

(content and structure) 
Low impact actions 

(layout) No impact actions 

Add a concept/link Move a concept/link Open or close menus 
Delete a concept/link Merge two links Move/scroll menu-

concepts  Edit a concept/link  
 

introduces the first activity. 2) Activity 1 (10 min.): using the 
MTDashboard, the teacher cleans up the four tabletops for all 
groups to start at the same time. Students are instructed to create 
a concept map that represents how the main actors of the case are 
associated. 3) Reflection 1 (5 min.): the teacher blocks the 
tabletops, leads a short class discussion about partial solutions 
and introduces Activity 2. 4) Activity 2 (15 min.): this is for the 
teacher   “the most important activity of the tutorial from the 
learning perspective”.   The   teacher   unblocks   the   tabletops, and 
students discuss and focus on representing a final solution to the 
case in their concept map. 5) Class sharing and reflection (10 
min.): the teacher asks each group to share their solution with the 
class. After each group has explained their map, the teacher 
summarises the outcomes of the tutorial, finishes the session and 
assesses each group in private. The class time was fixed to 50 
minutes. Details of these tutorials can be found in [11]. 

4. STUDY DESIGN AND DATASET 
DESCRIPTION  
The teacher in the classroom can face a number of challenges 
related with control, awareness and resources management [22] 
which depend on a number of factors that may fall out of the 
scope of what tabletop systems can capture. The tabletop systems 
are not totally aware of the classroom situation, for example, if a 
group of students is talking, if they work on-task or if someone 
needs to leave the class. The teacher can have a better idea of the 
productivity of students’ discussions within each group, however, 
one of the main conclusions after finishing the tutorials was that 
for the teacher it is not easy to know aspects of the final artefacts 
that students built or their individual contributions [11].  
In a post-tutorial interview the teacher expressed her view as 
follows: “I   don’t   want   to see a lot of information in the 
dashboard, this can be distracting. But more information can be 
provided after the tutorials for assessment, like who did what, 
when,  and  the  quality  of  the  work”. These are indeed the aspects 
of group work that tabletops are aware of in detail. Our system 
can capture: 1) differentiated  students’  action  on  the  tabletop;;  2) 
the sequential actions performed to build the group artefact.  
Inspired by the above teacher needs, but framed on what 
tabletops can actually capture in an authentic classroom, we 
propose an approach to distinguish strategies followed by groups 
that either needed more coaching or worked effectively. We 
analyse three sources of contextual information i) identified 
individual actions on the tabletop that can occur in parallel, in 
turn, or   on   other   students’   objects,   ii) the quality of students’  
actions according  to  the  teachers’  artefact,  and  iii)   the impact of 
students’  actions on the group artefact. In this paper we focus on 
the students’   actions performed in Activity 1. This is important 
because a certain degree of success in Activity 1 is required for 
Activity 2. This also allows the approach to be applicable in real-
time, to provide feedback to teachers before the tutorial is over, 
so they can target their support during Activity 2. 

The teacher assessed groups at the end of each tutorial, using one 
of three possible values: low, medium or high achievement. The 
teacher specified that the assessment criteria mostly considered 
the quality of each group solution presented at the end of the 
tutorial and the quality of their discussions during the tutorial. 
We considered the activity data of all the 32 groups divided in 
two sets: 20 groups that were high achieving and 12 groups that 
were medium or low achieving.  

The initial raw data of each group consists of a long sequence of 
actions in which each element is defined as: {Resource, 
ActionType, Author, Owner, Time, Relevance}, where Resource 
can be: Conc (concept), Link (proposition) or Menu. ActionType 
can be: Add (create a concept or link), Del (delete), Mov (move) 
links, Chg (edit), Scroll, Open or Close (a menu). Author is the 
learner who performed the action, Owner is the learner who 
created an object or owns a menu, Time is the timestamp when 
the action occurred and Relevance indicates if the concept or link 
belongs   to   the   crucial   elements   of   the   teacher’s   map. Table 1 
lists all the possible actions in the dataset grouped by their 
impact on the group concept map. Some examples of actions are: 
{ConceptA, Add, 3, 3, 17:30:02, Crucial}, when a learner adds a 
crucial concept to the map; {LinkY, Move, 2, 6, 17:30:04, Irr}, 
when s/he moves a link created by another learner; and 
{MenuConcepts, Open, 2, 2, 17:30:07,-} when s/he opens the list 
of suggested concepts.  The original sequence obtained for each 
group contained from 74 to 377 physical actions. 

We address four research questions regarding the strategies and 
characteristics that can differentiate groups according to their 
extent of achievement. The formulation of these is based on the 
triangulation of the nature of the available data (differentiated 
students’  actions and their impact on their artefact), the teacher’s 
needs (awareness  on   students’  participation  and  quality  of   their  
work), and open issues in the study of multi-tabletop classrooms 
[10]. Our research questions are the following. 1) Can we 
distinguish groups by inspecting patterns of parallelism and 
turn-taking? As the teacher is interested in the participation of 
all students in the construction of the group solution [10], we 
analyse whether it is possible to find differences among groups 
where students worked at the same time (in parallel or taking 
turns) or not. 2) Can we distinguish groups by inspecting 
students’   interactions  on  others’  objects? Other studies inspired 
this question; these have suggested that interacting with what 
others’  have  done  may  trigger  further  discussion  that  is  beneficial 
for tabletop collaboration [11, 13]. 3) Can we distinguish groups 



Table 2. Keywords included in the alphabets for the sequential pattern mining. 

Resource Action type 
Alphabet 1 

Parallelism –turn 
taking 

Alphabet 2 
Actions on  others’  

objects 

Alphabet 3 
Master map 

distance 
Concept (Conc)-C Add -C,L Delete (Del)-C,L Parallel Own  Cruc (C,L) 

Link -L Edit (Chg) -C,L Merge (Move)-L Other NoOwn NoCruc (C,L) 
Menu -M Move -C,L,M Open -M Same   

  Close -M    
Inactivity block (Inact)-B Short(Shrt) -B Long –B    

 

by  inspecting  students’ map quality? This and the next question 
are directly inspired by teachers’  needs, as noted above, and the 
data captured by our system about the groups’  artefacts and the 
process followed to build them. 4) Can we distinguish groups by 
inspecting the process followed by students’   actions and their 
impact on the group artefact?  

5. METHOD 
Sequential mining and process mining are techniques that have 
been used to identify patterns in educational datasets by 
considering the  order  of  students’  actions [7, 12, 19]. We used a 
sequential pattern mining technique called differential sequence 
mining [7] to distinguish strategies followed by groups that were 
either high or low achievers and address each of our first three 
research questions. For these, we analysed two of the sources of 
contextual information listed in the previous section: i) identified 
actions on the tabletop and ii) the quality of students’ artefact. In 
order to address the fourth question, and analyse the strategies 
that distinguish groups according to iii) the impact of students’  
actions on the group map, we used the Fuzzy Miner tool [6]. Next 
subsections present the motivation for using these tools, the data 
pre-processing and the implementation of each technique. 

5.1 Sequence mining 
One of the data mining techniques that has been succesfully 
applied to identify patterns that differentiate high from low 
achieving students is differential sequence mining (DSM) [7]. In 
general, a sequential pattern is a consecutive or non-consecutive 
ordered sub-set of a sequence of events that is considered 
frequent when it meets a minimum support threshold. In 
educational contexts, the events commonly correspond to 
individual   or   grouped   students’   actions logged by the learning 
system. The DSM algorithm extracts frequent consecutive 
ordered sequences of actions from 2 datasets and performs an 
analysis of significance to obtain the patterns that differentiate 
them. The actions can also contain contextual information as 
defined by an alphabet. Alphabets can be used to encode each 
action to a set of concatenated keywords. In our study, each 
action was encoded to the format {Resource-ActionType-
Context}. We implemented a DSM solution to investigate the 
differential patterns in terms of degree of parallelism, actions of 
students   on   others’   objects   and   relevance   of   the   links   and  
concepts students use according to the teacher;s map. Table 2 
presents the keywords of each of our three alphabets. The 
encoded actions encoded using any alphabet should contain at 
least one keyword for the Resource column and one for the 
ActionType column. We add one keyword of the corresponding 
contextual information (three rightmost columns in Table 2) 
according to the Resource type. Alphabet 1 aims to model the 
differentiated individual actions performed on the tabletop that 
occur in parallel (with other students’ actions, keyword: 

Parallel), in turns (when the previous action was performed by a 
different student, keyword: Other), or as a series of actions by the 
same student (Same). Alphabet 2 models the actions that 
students perform on their own objects (Own) or on other 
students’  objects  (NoOwn). Finally, Alphabet 3 indicates whether 
the concept or link involved in the action belongs to the crucial 
objects defined by the teacher (Cruc or NoCruc).  

In a previous study, we found that it is very important to consider 
the periods of significative inactivity registered by the tabletop 
[11]. During these periods of inactivity students can be having 
productive discussions, off-task talking or not working 
collaboratively at all. In our study, even when we do not perform 
speech detection, it is important to at least consider the 
occurrence of inactivity. To define a period of inactivity, we 
explored the time gap between each action performed on the 
tabletop. We found that time gaps between actions below one 
standard deviation from the mean (<µ+1σ)  account  for   the  92%  
of the set. (µ= 4.30 seconds, σ=  8.62,  µ  +1σ=13  seconds). This 
means that a period above 13 seconds without logged actions can 
be considered as a block of inactivity. We defined these blocks as 
short when the gap was between 13 (µ+1σ) and 22 (µ+2σ) 
seconds, and long, for gaps longer than 22 seconds (µ+2σ). We 
detected from 6 to 19 periods of inactivity in each group.  
The output of the DSM algorithm, using the three alphabets, 
consists of three sets of frequent sequential patterns that 
differentiate high from low achieving groups according to the 
teacher’s  assessment.  In this study, we set a minimum support of 
0.5 to consider a pattern as frequent and a maximum error of one 
to allow matching sequences with up to 1 different action, 
similarly to previous work on educational data exploration [7].  

5.2 Process mining 
The sequence mining approach presented above can extract 
patterns of activity that distinguishes groups; however, it does 
not give insights of the higher level view of the processes 
followed. The Fuzzy miner [6] is a process discovery tool that 
can generate a meaningful abstraction of a general process, from 
multiple instances by distinguishing the activities that are 
important. It is especially suitable to mine unstructured 
processes, like the concept mapping construction in this study. 
The input of this algorithm is a series of consecutive actions, or 
group of actions. The result is a directed graph in which each 
node represents an action, or group of actions, and the edges 
represent the transitions between these. The nodes and edges that 
appear in the graph should meet a conformance threshold based 
on the instances that were used to build the model.  

The objective of this second analysis is to discover the meaning 
of the higher level steps that high and low achieving groups 
performed to build the concept map and the impact of such 
actions. For this, we performed the following data preparation 
before using the Fuzzy miner tool. 



Figure 3. Distribution of the length of the sets of activity in 
terms of number of actions. 
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1) Data grouping. We grouped the actions into periods of activity 
in order to generalise similar actions according to their impact on 
the concept map. First, we explored the number of actions 
contained in each period of activity between periods of inactivity. 
Figure 3 illustrates the frequencies of the number of actions 
within blocks of activity in the dataset (µ= 12.85   actions,   σ=  
17.68). The distribution shows a high frequency of periods with a 
small number of continuous actions, and a long tail of longer sets 
of actions. In fact, the 71% of the periods of continuous activity 
were below the mean size (13 actions) and the 87% of them were 
below one standard deviation from the mean (30 actions). We 
considered the mean (13 actions) as a practical threshold for the 

maximum size of a block of activity.  

2) Actions categorisation. Based on the definition and previous 
research on concept mapping [15, 16], we categorise students’  
actions according to their impact on the group map. Actions that 
make a change in the structure or content of the concept map are 
categorised as High-impact actions. These include actions that 
modify the quantity or content of concepts and links (Table 1). 
The second category is Low-impact actions, which includes 
actions that modify the layout of the map, which is important for 
the activity, but not crucial. These actions include moving 
concepts and links, or merging links. Finally, actions performed 
on the menus of the application belong to No-impact actions.   

3) Blocks categorisation. Each block was categorised according 
to the actions that occurred within that period following the next 
rules: HighOnly for blocks that contained only high-impact 
actions and some no-impact actions; HighLow, if the block 
contained at least one high-impact and one low-impact actions; 
LowOnly, for blocks that contained only low-impact actions and 
no-impact actions; and NoImpact if the block contained just no-
impact actions. Periods of inactivity were categorised as either 
InactShort or InactLong, as explained earlier.  

4) Addition of contextual information. According to our research 
aim, we highlighted the importance of distinguish the learners 
who work on their own  or  on  other  students’  objects.  For  this,  we  
added the information about who touched which object with the 
keywords NoOwn if most of the actions were performed on 
others’   objects   and   Own if the actions were performed on the 
same  learners’  objects.    

After performing the data preparation we divided the dataset into 
two sets, one for high and one for low achieving groups, as we 
did for the sequential mining. We generated two corresponding 
fuzzy models using the plugin implemented in the ProM 
framework (www.processmining.org). Then, we performed two 

model analyses: analysis of the number of active learners, and a 
validation of the models to discriminate groups. 

Analysis of number of active learners. We explore whether there 
is a difference in the number of learners that were actively 
involved in each of the significant activities that appear in each 
fuzzy model (the nodes of the model). For the latter, the explored 
values corresponded to blocks of activity in which only one 
learner (1u), two (2u), or more than 2 learners (+u) were 
involved in the actions within a block of activity. This takes into 
account that all groups had from 4 to 6 group members. No 
correlation was found between the group size and the level of 
achievement of each group (r = 0.2). 

Validation of the models. We performed a cross validation of the 
two models to evaluate if they can be used to effectively 
differentiate high from low achieving groups. To do this, we 
calculate, for each group process, the level of conformance of 
both fuzzy models and validate that the model that fit the most 
corresponds to the level of achievement of the group.  

6. RESULTS AND DISCUSSION 
6.1 Sequence mining results 
After applying the DSM algorithm on the encoded datasets 
according to our three alphabets, we selected the patterns whose 
instance support (number of times the pattern is repeated within 
a group log) differed between the high and low achieving groups 
(p<=0.10) and that were composed of at least 2 actions. Table 3 
presents the top-4 most frequent sequences for each of the three 
alphabets explored in this part of the study. 

Alphabet 1: focused on parallelism and turn-taking. We obtained 
a total of 23 differential patterns for groups that were either high 
or low achieving after analysing the first encoded dataset. The 
top sequences in Table 3 indicate the presence of actions in 
parallel for move events (sequence A) and actions that contain 
the keyword Other, when adding and moving elements of the 
concept map (sequences B, C and D). These provide evidence 
that in high achieving groups more than 1 student quite often 
interacted with the tabletop at the same time. In fact, the 
keywords Parallel and Other appeared in 13% and 66% in the 
frequent patterns of high groups, while in the low achieving 
groups there were no patterns with the keyword Parallel and the 
keyword Other only appeared in the 30% of them.  

Alphabet   2:   focused   on   actions   on   others   students’   objects.   In 
this case, we obtained a total of 29 differential patterns. Table 3 
shows that in high achieving groups, students tended to interact 
with objects created by other students, such as moving and 
adding links using  others’  concepts,  either followed or preceded 
by periods of inactivity (keywords NoOwn and Inact in sequences 
I, J, and L). The keyword NoOwn appeared two times more often 
in the frequent sequences of the high groups than in the 
achieving groups (in 42% and 22% of the sequences 
respectively).   The   presence   of   actions   on   students’   own objects 
(Own) was similar in all groups. 

Alphabet 3: focused on Master map distance.  We obtained 28 
differential patterns by analysing the encoded dataset. This 
includes contextual information of the concepts and links that 
belong to the crucial elements defined by the teacher. The 
patterns in Table 3 show that in high achieving groups, students 



Table 3. Top-4 most frequent sequences after applying differential sequence mining on each encoded dataset.  
Alphabet 1 High achieving groups  Low achieving groups 

A- {Menu-Mov-Same}>{Menu-Mov-Same}>{Menu-Mov-Parallel} E- {Link-Add-Same}>{Link-Rem-Same}>{Con-Mov-Same} 
B- {Con-Mov-Other}>{Link-Add-Same}>{Con-Mov-Same}> 
     {Link-Add-Same} F- {Link-Rem-Same}>{Con-Mov-Same}>{Link-Add-Same} 

C- {Inact-Shrt}>{Con-Mov-Other}>{Link-Add-Same} G- {Link-Add-Same}>{Link-Chg-Same}>{Inact-Long} 
D- {Con-Mov-Other}>{Link-Add-Same}>{Con-Mov-Same} H- {Inact-Long}>{Inact-Shrt}>{Con-Mov-Same} 

Alphabet 2 High achieving groups  Low achieving groups 
I-   {Con-Mov-NoOwn}>{Con-Mov-NoOwn}>{Link-Add-Own}> 
    {Inact-Shrt} 

M- {Inact-Shrt}>{Con-Mov- NoOwn }>{Link-Add-Own}> 
      {Link-Chg-Own} 

J- {Inact-Shrt}>{Con-Mov- NoOwn }>{Con-Mov- NoOwn }> 
    {Link-Add-Own} N- {Link-Add-Own}>{Link-Chg-Own}>{Inact-Long} 

K- {Link-Mov- NoOwn }>{Link-Mov- NoOwn }>{Con-Mov- NoOwn } O- {Link-Chg-Own}>{Inact-Long} 
L- {Inact-Shrt}>{Con-Mov- NoOwn }>{Con-Mov- NoOwn } P- {Inact-Long}>{Inact-Shrt}>{Con-Mov- NoOwn } 

Alphabet 3 High achieving groups  Low achieving groups 
Q- {Con-Mov-Cruc}>{Link-Add-Cruc}>{Con-Mov-Cruc}> 
     {Link-Add-Cruc} 

U- {Link-Rem-NoCruc}>{Con-Mov-Cruc}>{Link-Add-Cruc}> 
     {Link-Chg-NoCruc} 

R- {Inact-Shrt}>{Con-Mov-Cruc}>{Con-Mov-Cruc}>{Link-Add-Cruc} V- {Link-Chg-NoCruc}>{Link-Chg-NoCruc}>{Inact-Shrt} 
S- {Link-Add-Cruc}>{Link-Mov-Cruc}>{Con-Mov-Cruc} W- {Inact-Shrt}>{Link-Add-Cruc}>{Link-Chg-NoCruc} 
T- {Link-Chg-Irr}>{Con-Mov-Cruc}>{Link-Add-Cruc} X- {Con-Mov-Cruc}>{Link-Add-Cruc}>{Link-Chg-NoCruc}>{Inact-Long} 

 

tended to work with more crucial elements than low achieving 
groups. However, an analysis of all patterns found showed that 
there was not a large difference in actions performed on crucial 
elements (keyword Cruc was present in 87% and 84% of the 
patterns of high and low achieving groups respectively). 
However, the key difference was that high achieving groups 
interacted with less non-crucial concepts and links (keyword 
NoCruc was in 19% and 73% of the patterns of high and low 
achieving groups respectively). 

The sequences of events extracted using this technique, provides 
some insights about the strategies followed by groups. Low 
achieving groups tend to have long periods of inactivity on the 
tabletop before or after creating links or performing a chain of 
actions that affect the layout of their concept map (e.g. action 
Inact-Long in patterns G, H, N, O and X). High achieving groups 
also had periods of inactivity, but these were shorter. Long 
periods of inactivity appeared two times more in the low 
achieving groups, followed or preceded by other actions (Inact-
Long appeared in 48% and 22% of the sequences of high and low 
achieving groups respectively). There was no difference in the 
appearance of short periods of inactivity.  

These findings suggest that, to discover the strategies followed 
by groups, this approach offers a limited view of the meaning of 
the actions. The frequent sequences that were found can be used 
to  build  a  model  or  benchmark  to  ‘detect’  if  students’  actions  are  
similar to either high or low achieving groups. However, the 
patterns themselves do not provide information about the process 
that groups followed during the activity that would be easily 
associated  with  groups’ behaviours.  

6.2 Process mining results 
Figure 4 shows the resulting fuzzy models after applying the 
second approach to mine the process of both, high and low 
achieving groups where the conformance with their 
corresponding datasets was above 80%. Nodes of the graph 
represent categories of action blocks of activity and the edges the 
transitions between these. Each node contains: the name of the 
block category, the conformance of the block with the dataset, 
and the rates of active students that were involved in the 
activities (1u, 2u and +u). Nodes with conformance rates below 

to 0.1 were not considered in the models to include the majority 
of the block categories but disregarding the actions that rarely 
appeared in the data and that would make the graph 
unnecessarily complex. The numbers next to the edge lines are 
indicators of conformance of the transitions with the datasets.  
By visually comparing both graphs we can highlight that they 
share the same core blocks of activity. These include: the blocks 
Inact-Short and Inact-Long (marked with an orange small square 
in the top left of the node). We confirmed the results obtained 
with the sequence mining, where low achieving groups showed 
more long periods of inactivity compared with high groups 
(conformance of 0.68 and 0.98 respectively). Both models also 
have in common the categories HighLow-NoOwner and 
HighLow-Owner (blue markers) that represent activity that 
combined high and low impact actions on the group map 
(conformance of 1 and around 0.4 respectively). The last 
similarity, in terms of nodes, corresponds to blocks of low impact 
actions   where   students   interacted   with   other   students’   objects  
(LowOnly-NoOwner, red markers).  
The nodes marked with a yellow star correspond to activity 
blocks that appear in one model but not in the other. High 
achieving groups, contrary to the expected, presented more 
blocks of actions with no impact on the concept map (NoImpact-
Owner/NoOwner). However, both nodes had the least 
conformance with the model (0.11 and 0.2 respectively). In 
contrast, low achieving groups presented blocks of activity with 
only high impact actions (HighOnly- Owner/NoOwner). The 
conformance of these blocks was not low (conformance of 0.37 
and 0.74 respectively).  
However, the main difference between the models is in the 
structure of the transitions. For the model of high achieving 
groups, there is only one transition between different blocks of 
activity. This was, in addition, not very frequent (0.08 
conformance, between NoImpact-Owner and HighLow-Owner). 
By contrast, the model of low achieving groups contains 5 
transitions between activity nodes with a conformance of up to 
0.17 (between HighLow-Owner and LowOnly-NoOwner). 
Additionally, we did not find any observable difference in the 
actions performed on other students objects (NoOwner) and 
students’  own  objects  (Owner). 



Table 5.  Validation of the fuzzy models 
 Predicted class 
 High Low 

Actual 
class 

High 17 3 
Low 0 12 

 

Table 4.  Distribution of the number of active learners in 
blocks of activity 

Achievement One learner 
(1u) 

Two learners 
(2u) 

More learners 
(+u) 

High 55% 18% 27% 
Low 54% 27% 19% 

 

Figure 4. Fuzzy model generated from groups’  activity. Left: Fuzzy model of high achieving groups (Conformance: 86%, 
Cuttoff: 0.1). Right: Fuzzy model of low achieving groups (Conformance: 81%, Cuttoff: 0.1). 
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Next, we present the analysis of the number of students involved 
in the activities and the validation to determine if the observable 
differences can distinguish high from low achieving groups.  

Active learners. Table 4 shows the results of the cumulated 
distribution of the number of learners involved in the periods of 
activity for both high and low achieving groups (partial rates 
displayed in the third line of text inside each node of Figure 4). 
Both high and low achieving groups presented more than the half 
of the blocks of activity performed by a single student (54/55%). 
The main difference found was that high achieving groups 
presented blocks of activity in which more than two learners 
were involved in comparison with low achieving groups (+u, 
27% and 19% respectively). In low achieving groups most of the 
blocks of activity were performed by either one or two learners.  

Validation. In order to validate that the two models generated by 
the fuzzy miner are different and can be used to distinguish the 
process followed by either high or low achieving groups, we 
estimated how accurately each model will conform to each 
group’s activity. We performed a cross-validation to compare the 
level of fit of both models to the data blocks of each group by 
measuring whether the conformance of the model that 
corresponded to the level of achievement of the group was 
higher. Table 5 shows the confusion matrix which layouts the 
results of this analysis. This indicates that the fuzzy model for 
low achievement could distinguish the 100% of the low 
achieving cases, however, three high achieving groups presented 
a superior conformance to this model. The conformance of the 
model of high achievement was higher for the high achieving 

groups in 17 of the 20 cases. The difference between the levels of 
fit of each model was statistical significant for high achieving 
groups (paired t(23) = 2.46, p = 0.0219 ) and very close to 
statistical significance (p<=.05) for the model of low 
achievement (paired t(7) = 2.16, p = 0.061). 

7. CONCLUSIONS AND FUTURE WORK 
This paper described the technological infrastructure and the data 
mining and process mining techniques used to analyse the 
strategies that distinguish high from low achieving groups in the 
classroom. We presented a novel approach to mine traces of 
collaboration of students working face-to-face on an activity 
linked with the regular curricula and supported by a number of 
teacher-orchestrated interactive tabletops. Our goal was to 
exploit   students’   data   that   was unobtrusively captured in an 
authentic classroom in contrast to a controlled experimental 
setting. This can make our approach immediately applicable in a 
real classroom context equipped with the technology required. 
Sequential frequent mining was applied to find patterns of 
activity that differentiate groups. Results revealed interesting 
patterns that indicated students in high achieving groups worked 
more often in parallel, interacted with other students’  objects and 
mostly focused on the crucial elements of the problem to solve. 
The fuzzy miner tool was used to model the process that groups 
followed by grouping and categorising students’   actions. This 
modelling proved effective in helping distinguish part of the 
process followed by groups. High achieving groups tended to 
build their concept map interweaving periods of focused activity 
with periods of tabletop inactivity. Low achieving groups, by 
contrast, presented more transitions between different categories 
of blocks of activity including periods with only actions that 
caused high impact on the map. We also found that important 
strategies can be mined from early data. Our analysis was only 
performed on the data captured from the first activity of the 
classroom sessions. This gives time for the results of the analysis 
to be used by facilitators or group members in the classroom. 
The knowledge generated by the sequence patterns and the fuzzy 
models can be used in several valuable ways. Firstly, derived 
groups’   indicators can be displayed in a processed form on the 
teachers’ dashboard to help them adapt in real-time the support 
to groups that might need closer attention. Secondly, the findings 
can be used to generate indicators of group learning to be shown 



to the teacher for after-class reflection or re-design of the activity 
or   to   reflect   on   students’   performance   or   assessment. Thirdly, 
this information can be the basis to build student models that can 
be shown to learners to encourage reflection and self-assessment. 

We acknowledge some current limitations of our approach. The 
first is that the  technology  to  capture  students’  actions is not yet 
developed to automatically record verbal interactions in the 
classroom, which is crucial in collaborative work. However, our 
approach proved that even modest interaction data can provide 
insights about their strategies. Regarding the configuration of the 
data mining method, especially for the Fuzzy process mining, 
changing some thresholds can produce different results. For 
example, the size of blocks of activity was set to the mean 
number of actions between two periods of inactivity (13 actions). 
We explored the generation of fuzzy models using two more 
heuristics for the maximum block size: µ/2 and µ+σ.   We  
obtained conformance rates as low as 60% for the block size 
heuristic of µ/2, and very similar fuzzy models and conformance 
rates   for   the   heuristic   µ+σ   compared   to   the  one  we  used   in   the  
study. Even when these rates are lower than the ones we 
obtained using the µ heuristic, a deeper analysis of the 
configuration of the approach is part of the work in progress.   

Our current work includes the exploration of ways to present the 
results of our approach to the teacher, in real time and for after 
class analysis. We also aim to connect the students’ data that can 
be captured when they work at the tabletop with other activities 
that they perform, for example, through online learning systems.  
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